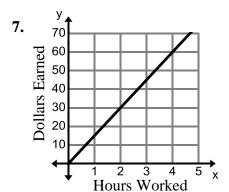
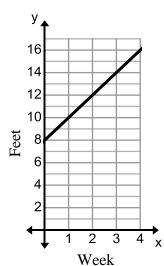
Unit 2 Review

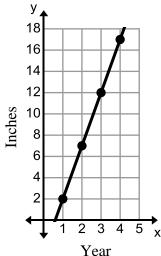
State if the following tables have a constant rate of change. If so, find the constant rate of change. If not, explain why.


1.	Hours	Miles
	1	46
	2	92
	3	138
	4	184

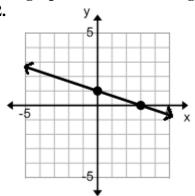
2.	Minutes	Dollars (\$)
	15	5
	30	9
	45	13
	60	15


3.	Seconds	Feet
	10	53
	12	57
	15	63
	19	71

- **4.** Does problem #1 show a proportional relationship? Explain.
- **5.** Does problem #2 show a proportional relationship? Explain.
- **6.** Does problem #3 show a proportional relationship? Explain.

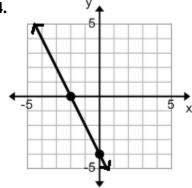

Find the constant rate of change from the graphs below. State if the graphs show a proportional relationship. Explain.

8.


9.

Find the constant rate of change given each situation.

- **10.** A cell phone plan is \$40 a month for 800 minutes.
- **11.** You got paid \$450 for 12 hours.


12.

13.

14

x-intercept: _____

x-intercept: _____

x-intercept: _____

y-intercept: _____

y-intercept: _____

y-intercept: _____

slope: _____

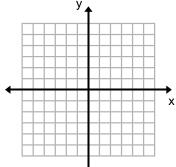
slope: _____

slope: _____

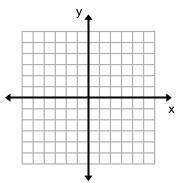
equation: ____

equation: _____

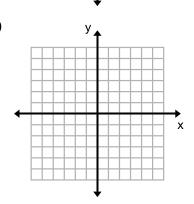
equation: _____

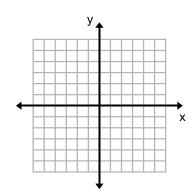

Find the slope of the line through the following points using the slope formula.

16.
$$(-2,4)$$
, $(2,10)$


17.
$$(-14,7)$$
, $(0,-1)$

Graph the line of the following equations.


18.
$$y = \frac{2}{3}x + 4$$


20.
$$2x + 3y = 9$$

19.
$$4x + 2y = 10$$

21.
$$y = -4$$

Write the equation of the line in slope-intercept form. (y = mx + b)

22.
$$m = -7$$
; $b = 4$

25.
$$m=\frac{3}{4}$$
; (0,8)

23.
$$m = -\frac{1}{4}$$
; $b = \frac{2}{7}$

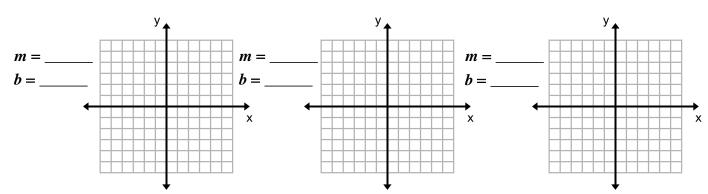
26.
$$m = -1$$
; $(0, -5)$

24.
$$m = 0$$
; $b = -1$

Solve for y. Write the equation in slope-intercept form. (y = mx + b)

27.
$$-5y = 2x + 10$$

28.
$$6x + 3y = 2$$

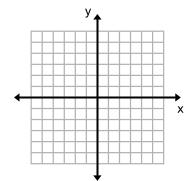

29.
$$y-8=-15$$

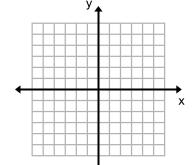
Graph each equation using slope-intercept form.

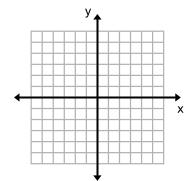
30.
$$y = 2x - 3$$

31.
$$y = x$$

32.
$$y = -3x$$




Find the x- and y-intercepts and then graph each line. Write the intercepts as a point.


33.
$$x + y = 5$$

34.
$$2x + 3y = 12$$

35.
$$4x-3y=-12$$

x – int:_____

y – int:_____

x – int:_____

y – int:_____

x – int:_____

y – int:_____

36. Given the equation y = -3x + 4, if the line shifts down by 5 units what is the new equation of the line.

37. Which equation has the steepest slope?

A.
$$y = -3x + 2$$
 B. $y = 5x + 7$ C. $y = -9x + 1$

B.
$$v = 5x + 7$$

C.
$$y = -9x + 1$$

38. Given the equation $y = \frac{2}{3}x - 7$, if the slope remains the same and the y-intercept increases by 2 units what is the new equation of the line?