Name: \qquad Period: \qquad
Secondary 1 H - Unit 3 Review Sheet

1. What is a constant rate? What types of sequences have constant rates?
2. What is a common ratio? What types of sequences have common ratios?

Are the following arithmetic, geometric, or neither? Why?
$\begin{array}{lll}3.1 .4,4.2,12.6,37.8 & \text { 4. } 57,54,51,48 & \text { 5. } 76,38,9.5,1.58\end{array}$
6. $2.3,6.8,11.3,15.8$
7. $26,33,41,50$
8. $98,49,24.5,12.25$

Write the recursive and explicit equations for each sequence:
9. $2,8,32, \ldots$
10. $\frac{5}{6}, \frac{7}{6}, \frac{3}{2}$
11. $-99,-9, \frac{-9}{11}$
12. $46.7,39.2,31.7$
13. $-125,-25,-5, \ldots$
14. $7,19,31, \ldots$

For questions \#15-24:
Write the recursive and explicit equations for each sequence given a table of values:
15.

x	$f(x)$
4	24
5	12
6	6
7	3
8	1.5

16.

x	$f(x)$
9	6.5
10	9.3
11	12.1
12	14.9
13	17.7

17.

x	$f(x)$
0	7
1	21
2	63
3	189
4	567

18.

x	$f(x)$
1	-17
2	-9
3	-1
4	7
5	15

21.

x	$f(x)$
54	1863
55	621
56	207
57	69
58	23

22.

x	$f(x)$
-5	9
-4	36
-3	144
-2	576
-1	2304

20.

x	1	2	3	4
$f(x)$	8	20	50	125

23.

x	-5	-4	-3	-2
$f(x)$	14	8	2	-4

24.

X	$f(x)$
-3	39
-2	45
-1	51
0	57
1	63

Use the graph to find the recursive and explicit equation:
25.

26.

27.

28.

Write the explicit equation from each context:
29. Capitol Theater has 51 rows of seats. There are 18 seats in the first row and each row has one more seat than the row before.
30. The fish in the pond are sick. In the beginning there were 500 fish in the pond. Each month there are $1 / 3$ as many fish as there were the previous month.
31. I borrow $\$ 250$ from a friend. I agree to pay this friend back $\$ 55$ each month.
32. On the first day I put 1 penny in a jar. Each day after, I put twice as many pennies in the jar as I did the day before.

Use the explicit equation to help you answer the following questions:
33. Find the $8^{\text {th }}$ term of the sequence: $\quad 34$. Find the $14^{\text {th }}$ term of the sequence:
$1 / 2,1,2, \ldots$

$$
12,1,2, \ldots
$$

$$
5
$$

35. Find the $-2^{\text {nd }}$ term of the sequence:
$15,7,-1$
36. Find the $-4^{\text {th }}$ term of the sequence:
$54,18,6, \ldots$
37. Find the $6^{\text {th }}$ term of the sequence:
$-4,-24,-144, \ldots$
38. Find the $7^{\text {th }}$ term of the sequence:

$$
-24,-8,8, \ldots
$$

Use the given recursive equations to find the requested values.
39. $f(2)=5 \quad f(x)=f(x-1)-19$

$$
f(0)=
$$

$$
f(\mathbf{1})=
$$

$$
f(2)=
$$

$$
f(3)=
$$

$$
f(4)=
$$

$$
f(5)=
$$

41. $f(1)=768 \quad f(x)=\frac{1}{4} f(x-1)$

$$
\begin{aligned}
& f(0)= \\
& f(1)= \\
& f(2)= \\
& f(3)= \\
& f(4)= \\
& f(5)=
\end{aligned}
$$

40. $\quad f(1)=3 \quad f(x)=2 f(x-1)$
$f(0)=$
$f(1)=$
$f(2)=$
$f(3)=$
$f(4)=$
$f(5)=$
41. $\quad f(0)=-23 \quad f(x)=f(x-1)+7$

$$
f(0)=
$$

$$
f(\mathbf{1})=
$$

$f(2)=$
$f(3)=$
$f(4)=$
$f(5)=$

The following tables represent arithmetic sequences. Find the missing terms - show your work! 43.

x	1	2	3	4
$f(x)$	2			206

44.

x	1	2	3	4	5
$f(x)$	-12				8

The following tables represent geometric sequences. Find the missing terms - show your work! 45.

x	1	2	3	4
$f(x)$	144			18

46.

x	1	2	3	4	5
$f(x)$	-2				$-13,122$

Use the following picture pattern to find the recursive and explicit equation for each. Assume that the first picture is Step 1.
47.

48.

Use the following recursive equations to find the explicit equation for each:
49. $f(2)=7 \quad f(x)=f(x-1)+4$
50. $f(-1)=6 \quad f(x)=3 f(x-1)$
51. $f(1)=-14 \quad f(x)=f(x-1)-5$
52. $f(1)=66 f(x)=f(x-1) \cdot \frac{1}{2}$
53. $f(-3)=43 \quad f(x)=2 \cdot f(x-1)$
54. $f(9)=-5 \quad f(x)=f(x-1)+3$

Do the following stories represent arithmetic sequences, geometric sequences, or neither?
55. \qquad Sally has 3 freckles. Each week she has twice as many freckles as the week before.
56. \qquad My house started with three icicles. Every week the number of icicles doubles.
57. \qquad For Halloween, I passed out 263 pieces of candy every 2 hours.
58. \qquad Jay had $\$ 700$, each day he spent half of a dollar at lunch.
59. \qquad Sam collects rocks. He like to pick a few up each Saturday. The first Saturday he picked up 5 rocks. They second Saturday he picked up 6 rocks. The third Saturday he picked up 7 and so on.....
60. \qquad Susan filled up her car with gas. Her car holds 20 gallons of gas. Each day she drives around and uses half of the gas left in her tank.
61. Sara wants to share her Halloween candy with every one in the school. On the first day, she gave 6 people candy. After that she decided to only give candy to 3 new people a day.
a) Create a table of at least 5 values
b) Create a graph of the information
c) Recursive Equation: (Be sure to label everything!)

d) Explicit Equation:
62. The business club is projecting their frazzle sales for the year. They started by selling $\$ 60$ of frazzles on week 9 . They predict to triple their sales each week.
a) Create a table of at least 5 values
b) Create a graph of the information
(Be sure to label everything!)
$\left.\begin{array}{cccccccccc}\cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right)$
c) Recursive Equation:
d) Explicit Equation:

