2.

Warm-up:

Find the constant rate of change for the tables below.

Time (min)	Jumping Jacks
1 1	50) 144
2	90
3	130
4	170.1+4
40 15	210 1 +46
1 min	f(x-1)
(X)	f(x)

Time (day)	Money (dollars)
11 5	66) -8
6	58
1 7	50
11 8	42

-18.00 per day

Recursive Equations: How to get to the next item in a table or sequence.

Starting Point Next = Previous ± change; f(x)=y f(x) = f(x-i) ± change

Ex. 1:

x	0	1	2	3
f(x)	5	15	45	135
		7	1	
	B3) b	3	03

$$f(x) = f(x-1) \cdot 3$$
;

Ex.

x	1	2	3	4	f(x)=f(x-1) • =
f(x)	80	40	20	10	1000 100 10
	0	7 00	7	71	f(i)=80
	T		7	-	7(1)-00
	01	0 -		5	

Growing Dots

1. Describe the pattern you see to the right.

2. What is the **recursive equation** (together as a class)?

$$f(x) = f(x-1) + 4$$
; $f(0) = 1$

3. Assuming the sequence continues in the same way, how many dots are there at 3 minutes? How do you know?

4. How many dots are there at 100 minutes? How do you know?

5. Use the information to create a table and a discrete graph.

Minute x	0	1	2	3	4	5	6	7
# of Dots $f(x)$	1	5	9	13	17	21	25	29

Growing, Growing Dots

1. Describe and label the pattern of change you see in the above sequence of figures.

Write a **recursive** formula to describe how many dots there will be after t minutes.

$$f(x) = f(x-1) \cdot 2;$$

 $f(0) = 3$

3. Assuming the sequence continues in the same way, how many dots are there at 5 minutes? How do you know?

4. Use the information to create a table and a discrete graph.

Minute x	0	t	2	3	4	5	
# of Dots $f(x)$	3	6	12	24	48	96	

Notes 3-1 **Sequences and Recursive Equations**

Unit 3

PRACTICE QUESTIONS:

2nd - 1st

1.

Term x	0	1	2	3	4	5	6	7
Value $f(x)$	- 6	ا ہو	4 +5	9	14	19	24	29

- a) What is the **change** for the sequence above? _____+
- b) Is the sequence **ARITHMETIC** or **GEOMETRIC**?
- c) Complete the table.
- d) Write a recursive equation for the table.

$$f(x) = f(x-1) + 5$$
; $f(0) = -6$

2.

Term x	1	2	3	4	5	6	7	8
Value $f(x)$	1/2	2	کر ⁸ <	32	128	512	2048	8192
			4 "	4	, 1			

- a) What is the **change** for the sequence above?
- b) Is the sequence ARITHMETIC of GEOMETRIC?
- c) Complete the table.
- d) Write a recursive equation for the table.

Arithmetic: When a sequence is changing adding or subtracting. Has CROC

Geometric: When a sequence is changing by multiplication. Has a common ratio