\qquad
\qquad
\qquad \ldots
Instructions:
a) Complete the table of values
b) Graph. Make sure you label your graph and asymptote.
c) Identify the y-intercept and asymptote for each graph.

1) $f(x)=2^{x}+3$
2) $y=\left(\frac{1}{5}\right)^{x}-2$

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

y-intercept: \qquad
asymptote: \qquad
3) $f(x)=4(3)^{x}+1$

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

y-intercept: \qquad
asymptote: \qquad
4) $y=-5\left(\frac{1}{2}\right)^{x}+3$

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

y-intercept: \qquad
asymptote: \qquad
5) $f(x)=-4\left(\frac{1}{9}\right)^{x}$
6) $y=7\left(\frac{1}{4}\right)^{x}+2$

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

y-intercept: \qquad y-intercept: \qquad
asymptote: \qquad asymptote: \qquad

For each problem you are given the parent function $f(x)$ and a second function $g(x)$ that has been shifted vertically.
a) Create a table for both $f(x)$ and $g(x)$ on graph paper.
b) Graph both $f(x)$ and $g(x)$ on the same graph. Use graph paper. Make sure to label your axis and draw the asymptotes.
c) Answer the questions below.
7)
$f(x)=5^{x} \quad$ and $\quad g(x)=5^{x}-2$

What is the y-intercept?
$f(x)$: \qquad $g(x):$ \qquad
Where is the asymptote?
$f(x)$: \qquad $g(x):$ \qquad
Are these functions increasing or decreasing?
Are these functions above or below the asymptote?

For each problem you are given the parent function $f(x)$ and a second function $g(x)$ that has been shifted vertically.
a) Create a table for both $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ on graph paper.
b) Graph both $f(x)$ and $g(x)$ on the same graph. Use graph paper. Make sure to label your axis and draw the asymptotes.
c) Answer the questions below.
8)

$$
f(x)=\left(\frac{1}{4}\right)^{x} \quad \text { and } \quad g(x)=\left(\frac{1}{4}\right)^{x}-1
$$

What is the y-intercept?
$f(x)$: \qquad $g(x):$ \qquad
Where is the asymptote?
$f(x)$: \qquad $g(x):$ \qquad

Are these functions increasing or decreasing?
Are these functions above or below the asymptote?

9)

$$
f(x)=\left(\frac{1}{5}\right)^{x} \quad \text { and } \quad g(x)=\left(\frac{1}{5}\right)^{x}+1
$$

What is the y-intercept?
$f(x)$: \qquad $g(x):$ \qquad

Where is the asymptote?
$f(x)$: \qquad $g(x):$ \qquad
Are these functions increasing or decreasing?
Are these functions above or below the asymptote?

For each problem you are given the parent function $f(\boldsymbol{x})$ and a second function $\boldsymbol{g}(\boldsymbol{x})$ that has been shifted vertically.
a) Create a table for both $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ on graph paper.
b) Graph both $f(x)$ and $g(x)$ on the same graph. Use graph paper. Make sure to label your axis and draw the asymptotes.
c) Answer the questions below.

10)

$f(x)=-(8)^{x} \quad$ and $\quad g(x)=-(8)^{x}+4$
What is the y-intercept?
$f(x)$: \qquad $g(x):$ \qquad

Where is the asymptote?
$f(x)$: \qquad $g(x):$ \qquad
Are these functions increasing or decreasing?
Are these functions above or below the asymptote?

Identify the \boldsymbol{y}-intercept and asymptote of the function, without graphing.
11) $f(x)=-(6)^{x}-4$
15) $y=6(3)^{x}-1$
y-intercept: \qquad asymptote: \qquad
y-intercept: \qquad
asymptote: \qquad
12) $f(x)=-5(2)^{x}+3$
16) $y=5(6)^{x}+2$
y-intercept: \qquad y-intercept: \qquad asymptote: \qquad asymptote: \qquad
17) $h(x)=-\frac{1}{3}(2)^{x}-7$
y-intercept: \qquad asymptote: \qquad
asymptote: \qquad
14) $y=-8(15)^{x}+10$
y-intercept: \qquad asymptote: \qquad
18) $y=27(4)^{x}-14$
y-intercept: \qquad
asymptote: \qquad

